Что такое дизель? принцип работы, устройство и технические характеристики дизельного двигателя

Электронный тюнинг двигателя

Современные дизельные двигатели все чаще оснащаются электроникой. Датчики, которые следят за нагрузкой, контролируют количество подаваемого топлива и состав топливного заряда, подают сигналы на центральный блок управления, который подбирает наиболее эффективный и экономичный режим работы. При аккуратном влиянии на эту систему с помощью дополнительного оборудования можно повышать мощность мотора в определенных пределах – это называется чип-тюнинг. Сразу нужно отметить, что чип-тюнинг не всесилен, он может улучшить работу двигателя в пределах заложенного запаса прочности и частенько приводит к преждевременному износу систем.

Для повышения мощности дизельного двигателя могут использоваться специальные модули или блоки:
— блок, изменяющий импульсы управления форсунками;
— блок замещения режимов топливного насоса высокого давления (ТНВД);
— блок, изменяющий показания датчика давления топливного аккумулятора;
— модуль оптимизации режимов.

Первый вариант – наиболее известный среди любителей автотюнинга. Принцип работы такого блока заключается в том, что он блокирует кратковременные импульсы предварительного и последующего открытия иглы форсунки, что снижает расход топлива. Блок можно установить практически на любой модели, но его работа снижает ресурс мотора и сказывается на качестве сгорания топливного заряда.

Второй вариант можно использовать только на определенных моделях двигателей. Принцип действия этого блока заключается в том, что он подает сигнал с заниженными показателями давления в системе, что приводить к его повышению. В этом случае «страдает» ТНВД и форсунки, но мощность двигателя действительно увеличивается, а расход топлива уменьшается.

Третий вариант предусматривает подключение блока, который подает на ЭБУ сигнал о допустимо пониженном значении давления в топливном аккумуляторе. В результате давление автоматически повышается и по-новому определяется время и интенсивность впрыска топлива. При этом повышается мощность и экономится топливо, но снижается ресурс ТНВД и сажевого фильтра, на стенках цилиндра образуется нагар, двигатель начинает «дымиться».

Наиболее безопасным и эффективным является четвертый вариант. Модуль, подключаемый к системе питания, не подменяет нужными цифрами истинные значения рабочих параметров, а посылает сигнал на ЭБУ о необходимости изменения длительности впрыскивания топлива. В отличие от предыдущих блоков, данный модуль не приносит никакого вреда ни двигателю, ни ТНВД, так что ресурс систем и механизмов не уменьшится. Недостатком данного способа повышения мощности является его высокая стоимость, ограниченность в применении и сложность конструкции. Он не дает моментального эффекта – его действие можно почувствовать только через некоторое время.

Есть и другие способы, в том числе и использование оборудования, которое меняет истинное значение стехиометрических величин, но их применение может привести к серьезным проблемам с двигателем.

Одной из серьезных проблем, возникающих у дизельных двигателей — это так называемый «разнос двигателя». Это нештатный режим работы дизельного двигателя, при котором происходит неуправляемое повышение частоты вращения вала двигателя. Такой режим обычно наблюдается после запуска или при резком сбросе нагрузки. Основных причин разноса две: неисправность топливного насоса высокого давления и попадание большого количества моторного масла в камеру сгорания.

https://youtube.com/watch?v=_jSbOW5cGgE

Управление работой дизельного двигателя

Конструктивные требования к работе дизельного двигателя

Вырабатываемая дизельным двигателем мощ­ность Р определяется крутящим моментом на коленчатом вале, передаваемым сцеплению, и частотой вращения коленчатого вала. Кру­тящий момент на коленчатом вале равняется крутящему моменту, создаваемому в процессе сгорания топлива, за вычетом механических потерь на трение, газообмен и привод вспомо­гательных агрегатов. Крутящий момент созда­ется в процессе силового цикла, и при наличии достаточного количества воздуха определятся следующими переменными: массой пода­ваемого топлива, моментом начала сгорания топлива, определяемым началом впрыска, и процессами впрыска и сгорания топлива.

Кроме того, максимальный, зависящий от частоты вращения коленчатого вала кру­тящий момент ограничен требованиями к ограничению дымности выхлопа, давлением в цилиндрах, тепловой нагрузкой различных компонентов и величиной механической на­грузки всей кинематической цепи привода.

Основная функция системы управления дизельным двигателем

Основной функцией системы управления дви­гателем является регулирование создаваемого двигателем крутящего момента или, при некото­рых условиях, регулирование частоты вращения коленчатого вала в пределах допустимого диа­пазона (например, оборотов холостого хода).

В дизельном двигателе очистка отработав­ших газов и подавление шума осуществляются в значительной степени внутри самого двига­теля, т.е. путем управления процессом сгорания топлива. Это, в свою очередь, осуществляется системой управления двигателем посредством управления следующими переменными:

  • Заряд смеси в цилиндре;
  • Объем заряда смеси, подаваемого во время такта впуска;
  • Состав заряда смеси (рециркуляция отра­ботавших газов);
  • Движение заряда (завихрения на впуске);
  • Момент начала впрыска;
  • Давление впрыска;
  • Распределение впрыска топлива (напри­мер, предварительный впрыск, разделен­ный впрыск топлива и т.д.).

До начала 1980-х годов управление впры­ском топлива и зажиганием осуществлялось исключительно при помощи механических устройств. Например, в топливном насосе вы­сокого давления количество подаваемого то­плива регулируется в зависимости от нагрузки двигателя и частоты вращения коленчатого вала путем поворота плунжера насоса, имею­щего спиральную канавку. В случае механиче­ского регулирования начало впрыска/подачи топлива регулируется при помощи центробеж­ного регулятора (зависимого от скорости вра­щения). Также применялись гидравлические системы регулирования, в которых количество топлива менялось посредством регулирова­ния давления в зависимости от нагрузки и частоты вращения коленчатого вала.

Точность регулирования

В настоящее время, в связи со строгими требованиями законодательства в отношении ограничения токсичности выбросов, требуется очень точное регулирование количества впрыскиваемого топлива и момента начала впрыска в зависимости от таких переменных, как темпе­ратура, частота вращения коленчатого вала, на­грузка и высота над уровнем моря. Это может быть обеспечено только при помощи электрон­ных систем управления. Сегодня электронные системы управления полностью вытеснили механические. Это единственный метод управ­ления, позволяющий осуществлять непрерывный мониторинг функций системы впрыска топлива, влияющих на содержание вредных веществ в выбросах автомобиля. В некоторых случаях законодательство требует также нали­чия системы бортовой диагностики.

Регулирование количества впрыскиваемого топлива и момента начала впрыска осуществля­ется системами EDC (электронная система управ­ления дизельным двигателем) при помощи электромагнитных клапанов высокого или низкого давления, или иных исполнительных устройств. Регулирование подачи топлива, т.е. количества топлива на один градус поворота коленчатого вала, может осуществляться косвенным образом, например, при помощи сервоклапана и регулиро­вания величины подъема игольчатого клапана.

КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.

Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).

Рис. 1.2. Двигатель со снятой головкой блока цилиндров.

Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.

Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).

Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.

Рис. 1.3. Поршень с шатуном.

Рекомендуем: Обзор подходящих герметиков для системы охлаждения двигателя

На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).

Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.

Примечание.

Распределительный вал двигателя приводится в действие коленчатым валом.

Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).

При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.

Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.

Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.

По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.

Как устроен дизельный двигатель

Основным отличием конструкции дизеля от бензиновых моторов является наличие топливного насоса высокого давления, дизельных форсунок и отсутствие свечей зажигания.

Общее устройство этих двух разновидностей силового агрегата не различается. И в том, и в другом имеются коленчатый вал, шатуны, поршни. При этом у дизельного мотора все элементы усилены, так как нагрузки на них более высокие.

При этом дизель легче заводится. Свечи зажигания в бензиновых моторах применяются для воспламенения топливовоздушной смеси в процессе работы двигателя.

Систему впрыска на дизелях делают прямой, когда топливо поступает непосредственно в камеру, или непрямой, когда воспламенение происходит в предкамере (вихревая камера, фор-камера). Это небольшая полость над камерой сгорания, с одним или несколькими отверстиями, через которые туда поступает воздух.

Такая система способствует лучшему смесеобразованию, равномерному нарастанию давления в цилиндрах. Зачастую именно в вихревых камерах применяются калильные свечи, призванные облегчить холодный пуск. При повороте замка зажигания, автоматически запускается процесс нагрева свечей.

Основные параметры электродвигателя

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) – векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

,

  • где M – вращающий момент, Нм,
  • F – сила, Н,
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

,

  • где Pном – номинальная мощность двигателя, Вт,
  • nном – номинальная частота вращения, мин-1

Начальный пусковой момент – момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)

Мощность электродвигателя

Мощность электродвигателя – это полезная механическая мощность на валу электродвигателя.

Мощность электродвигателя постоянного тока

Механическая мощность

Мощность – физическая величина, показывающая какую работу механизм совершает в единицу времени.

,

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t – время, с

Работа – скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .

,

где s – расстояние, м

Для вращательного движения

,

где – угол, рад,

,

где – углавая скорость, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение – значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

Коэффициент полезного действия электродвигателя

Коэффициент полезного действия (КПД) электродвигателя – характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

,

  • где – коэффициент полезного действия электродвигателя,
  • P1 – подведенная мощность (электрическая), Вт,
  • P2 – полезная мощность (), Вт

При этом

потери в электродвигатели обусловлены: электрическими потерями – в виде тепла в результате нагрева проводников с током; магнитными потерями – потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие; механическими потерями – потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии); дополнительными потерями – потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

где n – частота вращения электродвигателя, об/мин

Момент инерции ротора

Момент инерции – скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

,

  • где J – момент инерции, кг∙м2,
  • m – масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

,

где – угловое ускорение, с-2

,

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) – напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .

Электрическая постоянная времени

Электрическая постоянная времени – это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

,

где – постоянная времени, с

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Принцип работы дизельного двигателя

Принцип работы двигателя на дизельном топливе таков:

  • поршень снижается до нижнего своего положения;
  • свежие воздушные массы прибывают в пространство, оставшееся после того, как поршни опустились в самую нижнюю точку;
  • поршень подымается до упора, воздушная масса постепенно нагревается;
  • поршень доходит до высочайшей точки подъема, температура нагрева смеси достигает 800 градусов по Цельсию;
  • теперь происходит впрыск топлива в камеру двигателя внутреннего сгорания. Горючее и воздух возгораются, так как происходит воспламенение топлива из-за соприкосновения с горячими воздушными массами.

Из-за горения смеси внутри камеры образуется шум, который водитель может слышать во время работы дизельного мотора. Процесс полного сгорания даже небогатой топливной жидкости способствует высокому крутящему моменту силового агрегата. Поэтому дизельные движки считаются экономичными и мощными, в отличие от бензиновых моторов.

Опытные механики говорят, что для дизельных двигателей важным является присутствие чистого воздуха. Поэтому воздушные фильтры необходимо чистить и менять на втором техническом обслуживании во избежании непроходимости воздушной смеси. Иначе слабый доступ воздуха приведет к проблемам в работе движка.

Теперь давайте посмотрим, как устроена топливная система мотора на дизеле.

Камера сгорания топливной смеси

Разные модели дизельных двигателей отличаются между собой строением. Одной из немаловажных особенностей является конструкция камеры сгорания. Камера сгорания – пространство, где происходит непосредственно сгорание топлива.

Неразделенная камера расположена в самой конструкции поршня или над ним, топливо на такте впуска попадает в нее, где и воспламеняется при контакте с горячим воздухом. Это наиболее простой вариант, который, к тому же, снижает расход топлива, но сам двигатель при этом работает очень громко.

Другой вариант – разделенная камера, то есть камера, которая расположена не в цилиндре, а на входе к нему и связана с ними каналом. Топливо подается в камеру, где перемешивается с вихревым потоком воздуха, что лучше распределяет его капли по объему камеры сгорания и способствует полному его сгоранию. Такой вариант подходит для небольших установок и легковых автомобилей, но он значительно увеличивает расход топлива.

Исходя из конструкции поршня и камеры сгорания, различают разные способы смесеобразования в дизельных ДВС:

— объемное смесеобразование – самый простой вариант. Камера сгорания представляет собой пространство между поршнем, стенками и головкой цилиндров. Топливо впрыскивается под давлением через распылители форсунок

Здесь важно, чтобы капли топлива равномерно распределились по всему объему и тщательно перемешались с горячим воздухом, поэтому в камере сгорания должен быть организован вихреобразный поток топливного заряда, а само топливо должно подаваться под высоким давлением;

— объемно-пленочное смесеобразование используется в высокооборотных двигателях с небольшим диаметром цилиндров. Это как раз тот случай, когда камера сгорания частично размещена в конструкции поршня. В двигателях отечественного производства такие камеры имеют форму усеченного конуса. При впрыскивании заряда топливо попадает на поверхность камеры сгорания, образуя «пленку», после чего практически сразу испаряется. Вихревые потоки, образующиеся под воздействием перемещения поршня, дают возможность равномерно распределить капли топлива по всему объему;

— предкамерное смесеобразование предусматривает наличие предкамеры, расположенной в крышке цилиндров. Она соединяется с основной камерой сгорания небольшими каналами с диаметрами не более 1% от диаметра поршня. Объем предкамеры составляет до 30% общего объема камер. По форме она может быть овальной, цилиндрической или сферической;

— вихрекамерное смесеобразование происходит за счет вихревых потоков воздуха, что дает возможность максимально смешать топливный заряд с воздухом даже при невысоком давлении его подачи в камеру сгорания. Для такого смесеобразования необходима раздельная камера, состоящая из двух частей: вихревой и основной. На такте сжатия воздух из основной камеры вытесняется в вихревую, которая имеет сферическую или цилиндрическую форму. Поток воздуха создает вихревые движения, двигаясь по кругу, а в это время из форсунки под давлением до 12 МПа подается заряд топлива. Поскольку воздушная волна находится в движении, капли равномерно распределяются по всему ее объему.

Компановка двигателя

4-хтактные дизельные двигатели отличаются не только строением камеры сгорания, но и количеством цилиндров и их взаимным расположением. Понятно, что чем больше цилиндров, тем мощнее двигатель и тем он больше по размерам. Разные варианты компоновки позволяют уменьшить его габариты. В зависимости от расположения цилиндров двигатели могут быть:

1. Рядный.

Все цилиндры располагаются в ряд. Такая конструкция двигателей самая простая, детали к ним имеют несложную технологию производства.

2. V- образный двигатель.
Цилиндры в таком двигателе расставлены в форме буквы V, в двух плоскостях, двумя рядами под углом 600 или 900. Образовавшийся между ними угол – это угол развала. Плюсом такого двигателя является мощность. Его габариты могут быть уменьшены за счет смещения в развал других важных компонентов. Его длина меньше, а ширина больше. Но из-за сложности таких конструкций бывает непросто определить центр их тяжести.

3. Оппозитные двигатели (маркировка В).
Они относительно уравновешены, для уменьшения вибрации все элементы располагают симметрично. Их конструктивная особенность – центральное крепление вала на жестком блоке. Это так же влияет на степень вибрации. Угол развала составляет 1800.

4. Рядно-смещенные агрегаты (маркировки VR).
Данную компоновку отличает малый угол развала (150) V-образного двигателя в содружестве с рядным аналогом. Это позволяет уменьшить размеры продольного и поперечного агрегатов. Маркировка VR расшифровывается как V – образный, R — рядный.

5. W (или дубль V) — образный.
Самый сложный двигатель. Известен двумя видами компоновки.
1) Три ряда, угол развала большой.
2) Две компоновки VR. Они компактны, несмотря на большое количество цилиндров.

6. Радиальный (звездообразный) поршневой двигатель.
Имеет небольшой размер длины с плотным размещение нескольких штук цилиндров. Они располагаются вокруг коленчатого вала радиальными лучами с равными углами. Ее отличает от других наличие кривошипно-шатунного механизма. В данной конструкции один цилиндр выступает главным, остальные – прицепные – крепятся к первому по периферии. Недостаток: в состоянии покоя нижние цилиндры могут пострадать от протекания масла. Рекомендуют до начала запуска двигателя проверить, что в нижних цилиндрах масло отсутствует. В противном случае возможны гидроудар и поломка. Чтобы увеличить размер и мощность двигателя, достаточно удлинить коленчатый вал образованием нескольких рядов – звезд.

Устройство газораспределительного механизма

В современных моторах газораспределительный механизм располагается в головке блока цилиндров двигателя. В его состав входят следующие основные элементы:

  1. Распределительный вал. Это сложная по конструкции деталь, которая изготавливается из прочной стали или чугуна с высокой точностью обработки. В зависимости от конструкции ГРМ распредвал может устанавливаться в головке блока цилиндров или в картере двигателя (такая компоновка сейчас не применяется). Это основная деталь, которая отвечает за последовательное открытие и закрытие клапанов. Распределительный вал

На валу имеются опорные шейки и кулачки, которые и толкают стержень клапана или коромысло. Форма кулачка имеет строго определенную геометрию, поскольку от этого зависит длительность и степень открытия клапана. Также кулачки выполнены разнонаправленными, чтобы обеспечивать попеременную работу цилиндров.

Привод. Крутящий момент от коленчатого вала передается через привод на распределительный вал. Привод бывает разным в зависимости от конструктивного решения. Шестерня коленвала в два раза меньше шестерни распредвала. Таким образом, коленчатый вал вращается в два раза быстрее. В зависимости от типа привода в его состав входят:

  • цепь или ремень;
  • шестерни валов;
  • натяжитель (натяжной ролик);
  • успокоитель и башмак.

Впускные и выпускные клапаны. Они расположены в головке блока цилиндров и представляют собой стержни с плоской головкой на одном конце, которая называется тарелкой. Впускные и выпускные клапаны отличаются по конструкции. Впускной изготавливается цельной деталью. Также он имеет больший диаметр тарелки для обеспечения лучшего наполнения цилиндра свежим зарядом. Выпускной часто изготавливают из жаропрочной стали и с полым стержнем для лучшего охлаждения, так как в работе он подвергается более высоким температурам. Внутри полости находится натриевый наполнитель, который легко плавится и отводит часть тепла от тарелки к стержню.
Впускные и выпускные клапаны с пружинами

На тарелках клапанов сделаны специальные фаски, которые обеспечивают более плотное прилегание к отверстиям в головке блока цилиндров. Это место называется седлом. Кроме самих клапанов, в механизме предусмотрены дополнительные элементы, обеспечивающие его правильную работу:

  • Пружины. Возвращают клапаны в исходное положение после нажатия.
  • Маслосъемные колпачки. Представляют собой специальные уплотнители, которые не допускают попадания масла в камеру сгорания по стержню клапана.
  • Направляющая втулка. Устанавливается в корпус ГБЦ и обеспечивает точное движение клапана.
  • Сухари. С их помощью пружина крепится на стержне клапана.

Толкатели. Через толкатели передается усилие от кулачка распредвала на стержень. Изготавливаются из высокопрочной стали. Они бывают разных видов (механические (стаканы), роликовые, гидрокомпенсаторы). Тепловой зазор между механическими толкателями и кулачками распредвала регулируется вручную. Гидрокомпенсаторы или гидротолкатели автоматически поддерживают нужный тепловой зазор и не требуют регулировки.

Коромысло или рычаги. Простое коромысло представляет собой двуплечный рычаг, который совершает качательные движения. В различной компоновке коромысла могут работать по-разному.

Коромысло

Системы изменения фаз газораспределения. Данные системы устанавливаются не на все двигатели. Более подробно про устройство и принцип работы CVVT можно прочитать в отдельной статье на нашем сайте.

Что такое газораспределительный механизм (ГРМ)?

Газораспределительный механизм (ГРМ) — это механизм предназначенный для впуска в цилиндры двигателя свежего заряда (горючей смеси в классических бензиновых двигателях или воздуха в дизелях) и выпуска отработавших газов в соответствии с рабочим циклом, а также для обеспечения надежной изоляции камеры сгорания от окружающей среды во время тактов сжатия и рабочего хода.

В зависимости от вида устройств, осуществляющих впуск заряда и выпуск отработавших газов, различают два типа механизмов газораспределения:

Клапанный механизм наиболее широко распространен и используется во всех четырехтактных двигателях. Возможно верхнее и нижнее расположение клапанов. Верхнее расположение в настоящее время применяется чаще, так как в этом случае процесс газообмена протекает эффективнее. Характерные конструкции газораспределительных механизмов с верхним расположением клапанов представлены на рисунке.

Классификация ГРМ

Современные автомобильные двигатели могут быть оснащены различными типами газораспределительных механизмов.

ГРМ классифицируется по четырем категориям:

  1. По расположению распределительного вала – верхнее или нижнее расположение;
  2. По количеству распределительных валов – один (SOHC — Single OverHead Camshaft) или два (DOHC — Double OverHead Camshaft);
  3. По числу клапанов – 2, 3, 4, 5;
  4. По приводу распределительного вала – цепной, шестеренчатый и зубчато-ременный

Верхнее расположение вала в цилиндровой головке является самым распространенным и эффективным. Открытие и закрытие клапанов осуществляется от распределительного вала при помощи рычагов (толкателей) привода. Такое расположение распредвала способствует упрощению общей конструкции двигателя, уменьшению его массы, снижению инерционных сил.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Крутая шина
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: