Как быстро по схеме сделать зарядное устройство для автомобильного аккумулятора своими руками

Самодельная зарядка для АКБ

Существует много схем автомобильных зарядных устройств. Для реализации большинства подойдут детали, трансформаторы, выпаянные из старой радиоаппаратуры, блоки питания компьютеров.

Простое устройство на 6 и 12 вольт

Устройство подойдет для зарядки аккумуляторов напряжением 6 и 12 В, емкостью 10-120 А∙ч. Наладка после сборки не требуется, прибор сразу готов к работе.

Основные детали:

  1. Понижающий трансформатор Т1: от старого лампового телевизора или самодельный. Требуется мощность 300 Вт, ток 10-15 А, на выходе не менее 15 В.
  2. Выпрямитель из 4 диодов VD2-VD5, которые выдерживают ток от 10 А, обратное напряжение не менее 40 В. Такие характеристики у полупроводников типа Д2124, Д242, Д305. Их устанавливают через изоляторы на радиатор площадью 300 см² и более.
  3. Конденсаторы С1-С4 бумажные, рассчитанные не меньше, чем на 300 В. Такие используются в бытовой технике, имеют форму кубика.
  4. Переключатели S2-S5 для регулировки тока.
  5. Вольтметр PU1 на 30 В, амперметр PA1 на 30 А.

Величина зарядного тока устанавливается с помощью переключателей S2-S5. Через них в первичную обмотку трансформатора подключают конденсаторы С1-С4, гасящие колебания напряжения. Различными комбинациями включения тумблеров регулируют зарядный ток от 1 до 15 А с шагом 1 А. Например, чтобы установить 5 А, задействуют второй и четвертый переключатели. Комбинация S2 и S5 дает 10 А.

Зарядка с плавной регулировкой тока

Схема немного сложнее, но все детали доступны. Прибором заряжают 12-вольтовые АКБ, емкость которых — до 120 А∙ч. Вид зарядного тока — импульсный, используется тиристор. Регулятором плавно изменяют величину зарядного тока, но одновременно предусмотрен ступенчатый переключатель. Контролируют режим при помощи стрелочного амперметра на 30 А.

Самодельный резистор R1 нужен для ограничения тока. Для его изготовления подойдет медный или нихромовый провод диаметром 0,8 мм. Нужна будет небольшая индикаторная лампа Е1, рассчитанная на 24-36 В.

Выходное напряжение на понижающем трансформаторе 16-18 В, ток — 15 А. Ищут прибор с такими характеристиками или делают своими руками из подходящего устройства мощностью 300 Вт. Оставляют только первичную обмотку, вторичную из 42 витков наматывают проводом с изоляцией, сечение 6 мм².

Для схемы нужен тиристор КУ202 с буквенным индексом В-Н. Для охлаждения используют радиатор, площадь рассеивания которого от 200 см². А также понадобится диод VD1 любого типа с характеристиками обратного напряжения 20 В, тока — 200 мА.

Настраивают устройство калибровкой амперметра, подключив в качестве контрольного заведомо исправный. Для нагрузки вместо АКБ подключают автомобильные лампочки, общая мощность которых составляет 250 Вт.

Зарядка из компьютерного блока питания

Из старого блока питания ПК с контроллером TL 494 получается зарядное устройство с хорошими характеристиками. У него регулируемое напряжение и возможность подстройки тока до 10 А.

В демонтированный из компьютера БП вносят согласно схеме некоторые изменения:

  1. На шинах питания откусывают все провода, оставив только желтые и черные.
  2. Проводники одного цвета соединяют между собой. Жгут из черных — это минусовый контакт ЗУ, из желтых — плюсовой.
  3. Печатные дорожки к ножкам 1, 14, 15, 16 микросхемы перерезают.
  4. Для регулировки напряжения устанавливают переменный резистор 10 кОм, зарядного тока — 4,4 кОм.

Собирают способом навесного монтажа, используют провода с минимальным сечением 4 мм². Устанавливают вольтметр, амперметр, подключают провода с зажимами.

Расположенный внизу схемы резистор на 0,1 Ом мощностью 10 Вт и больше делают из меди или нихрома: подбирают нужную длину провода, замеряя сопротивление. Подойдут также резисторы С5-16МВ или 2 подключенных параллельно 5WR2J. Остальные — любого типа.

Схемы зарядного устройства для авто АБ

Для заряда аккумуляторов обычно используется бытовая сеть 220 В, которая преобразуется в пониженное напряжение при помощи преобразователя.

Простые схемы

Наиболее простой и эффективный способ — использование понижающего трансформатора. Именно он понижает 220 В до требуемых 13-15 В. Такие трансформаторы можно найти в старых ламповых телевизорах (ТС-180-2), компьютерных блоках питания, найти на «развалах» блошиного рынка.

Но на выходе трансформатора получается переменное напряжение, которое необходимо выпрямить. Делают это при помощи:

  • Одного выпрямляющего диода, который устанавливают после трансформатора. На выходе такого ЗУ ток получается пульсирующим, причем биения сильные — срезана только одна полуволна.

  • Диодного моста, который отрицательную волну «заворачивает» наверх. Ток тоже пульсирующий, но биения меньше. Именно эта схема чаще всего реализуется самостоятельно, хотя не является лучшим вариантом. Можно собрать диодный мост самостоятельно на любых выпрямляющих диодах, можно купить готовую сборку .

  • Диодного моста и сглаживающего конденсатора (4000-5000 мкФ, 25 В). На выходе этой схемы получаем постоянный ток.

В приведенных схемах присутствуют также предохранители (1 А) и измерительные приборы. Они дают возможность контролировать процесс заряда. Их из схемы можно исключить, но придется периодически использовать для контроля мультиметр. С контролем напряжения это еще терпимо (просто приставлять к клеммам щупы), то контролировать ток сложно — в этом режиме измерительный прибор включают в разрыв цепи. То есть, придется каждый раз выключать питание, ставить мультиметр в режиме измерения тока, включать питание. разбирать измерительную цепь в обратном порядке. Потому, использование хотя-бы амперметра на 10 А — очень желательно.

Недостатки этих схем очевидны — нет возможности регулировать параметры заряда.  То есть, при выборе элементной базы выбирайте параметры так, чтобы на выходе сила тока была те самые 10% от емкости вашего аккумулятора (или чуть меньше). Напряжение вы знаете — желательно в пределах 13,2-14,4 В. Что делать, если ток получается больше желаемого? Добавить в схему резистор. Его ставят на плюсовом выходе диодного моста перед амперметром. Сопротивление подбираете «по месту», ориентируясь на ток, мощность резистора — побольше, так как на них будет рассеиваться лишний заряд (10-20 ВТ или около того).

И еще один момент: зарядное устройство для автомобильного аккумулятора своими руками, сделанное по этим схемам, скорее всего, будет сильно греться. Потому желательно добавить куллер. Его можно вставить в схему после диодного моста.

Схемы с возможностью регулировки

Как уже говорили, недостаток всех этих схем — в невозможности регулировки тока. Единственная возможность — менять сопротивления. Кстати, можно поставить тут переменный подстроечный резистор. Это будет самый простой выход. Но более надежно реализована ручная регулировка тока в схеме с двумя транзисторами и подстроечным резистором.

Схема зарядного устройства для автомобильного аккумулятора с возможностью ручной регулировки тока заряда

Ток заряда изменяется переменным резистором. Он стоит уже после составного транзистора VT1-VT2, так что ток через него протекает небольшой. Потому мощность может быть порядка 0,5-1 Вт. Его номинал зависит от выбранных транзисторов, подбирается опытным путем (1-4,7 кОм).

Трансформатор мощностью 250-500 Вт, вторичная обмотка 15-17 В. Диодный мост собирается на диодах с рабочим током 5А и выше.

Транзистор VT1 — П210, VT2 выбирается из нескольких вариантов: германиевые П13 — П17; кремниевые КТ814, КТ 816. Для отвода тепла устанавливать на металлической пластине или радиаторе (не менее 300 см2).

Предохранители: на входе ПР1 — на 1 А, на выходе ПР2 — на 5 А. Также в схеме есть сигнальные лампы — наличия напряжения 220 В (HI1) и тока заряда (HI2). Тут можно ставить любые лампы на 24 В (в том числе и светодиоды).

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

О тиристорном выпрямлении

Область применения управляемых тиристорных выпрямителей ограничена из-за создаваемых ими больших коммутационных помех на выпрямленном напряжении. Но в ЗУ эти помехи не помеха, АКБ погасит. Зато по прочим свойствам тиристорные выпрямители для заряда АКБ не просто подходят, но подходят идеально.

Дело в том, что после тиристорного выпрямления без сглаживания зарядный ток на АКБ подается короткими импульсами с обрезанным фронтом увеличенной (но не чрезмерно) амплитуды. Как следствие, зарядка для авто аккумулятора с тиристорным выпрямителем дает десульфатирующий эффект без каких-либо дополнительных премудростей

И, что тоже важно, вероятность ухода АКБ в саморазогрев при заряде от тиристорного ЗУ на порядок меньше: ненужная электрохимия успевает рассосаться в промежутках между импульсами. Еще плюс такой же, как у диодов Шоттки: радиатор для пары тиристоров нужен той же площади, что для сборки Шоттки

Простоты ради тиристорные ЗУ часто строят по схеме однополупериодного выпрямления, см. рис.:

Тиристорные зарядные устройства для автоаккумуляторов с однополупериодным выпрямлением

Нижняя схема самая дешевая, т.к. для управления силовым тиристором вместо маломощного тиристора используется его аналог на транзисторах, он вдвое-втрое дешевле. Схема справа вверху самая дорогая из-за совсем недешевого промышленного тиристора Т122-25, к которому нужен еще и антишумовой фильтр C1T1C2. В остальном эти ЗУ равноценны.

Недостаток у однополупериодных тиристорных ЗУ один, но фатальный – то самое однополупериодное выпрямление. Половина первичных полуволн тока пропадает. Чтобы не затягивать заряд вдвое, приходится соотв. увеличивать амплитуду зарядного импульса. Она выходит за допустимые пределы, и преимущества тиристорного выпрямления сводятся на нет. Наоборот, однополупериодное тиристорное ЗУ опаснее для АКБ, чем диодное.

Схемы ЗУ для автоаккумуляторов с двухполупериодным тиристорным выпрямлением сохраняют все его достоинства и лишены указанного выше недостатка. Но подход к построению тиристорного выпрямителя нужен соответственный. Напр., схема слева на рис. – типично любительская. Выпрямитель сделан аналогично диодному мосту, что вдвое увеличивает падение напряжения на нем и требует пары совсем ненужных довольно дорогих компонент. Коммутационные помехи от такого ЗУ сильные, и нужно мотать нетиповой трансформатор.

Схемы тиристорных зарядных устройств для автоаккумуляторов с двухполупериодным выпрямлением

Близка к оптимальной для тиристорных схема известной автозарядки Amperus, справа на рис. Ее авторы позаботились и о хорошей антишумовой развязке цепей управления, что позволяет использовать Amperus в квартире. Единственный небольшой недостаток – ток и напряжение заряда взаимозависимы, т.к. выставляются совместно резистором на 1 кОм. Поэтому использовать Amperus желательно с УЗ (см. выше).

Простое зарядное устройство для АКБ на основе тиристора

По сути, речь идёт о тиристорном регуляторе. В прилагаемой схеме нет блока защиты, контрольного модуля и иных наворотов. Простота и минимальное количество деталей обусловили популярность этой несложной конструкции.

Возникает вопрос: не проще ли приобрести готовое устройство на тиристорах в магазине? Вроде бы, так и нужно поступить. Но у заводских недорогих ЗУ есть некоторые проблемы. Например, ток настраивается солидным переключателем, элементарно убавляющим либо прибавляющим витки в обмотке II трансформатора. Благодаря этому ток возрастает или падает. Получается грубо, ступенчато. А более качественное ЗУ стоит достаточно дорого. Поэтому имеет смысл сделать простое зарядное устройство своими руками. Плюсы:

  • доступность электронных компонентов и невысокая их стоимость;
  • лёгкость в поиске требуемой схемы (через интернет);
  • плавность регулировки тока зарядки (диапазон 1010 ампер);
  • использование импульсного тока, продлевающего эксплуатационный срок аккумулятора;
  • простая наладка;
  • стабильное функционирование.

Принцип работы схемы и подбор деталей

Перед вами фазоимпульсный регулятор, где главными элементами являются тиристоры. Под текстом – доступная схема зарядного устройства для автомобильного аккумулятора:

Электронные компоненты зарядного устройства для автомобиля, которое вы хотите собрать своими руками, с учётом обозначения:

  • С1 – от 047 до 1 мкФ на 63 В;
  • R1 сопротивлением 6,8 кОм (Р = 0,25 Вт);
  • R2 на 300 Ом;
  • R3 на 3,3 кОм;
  • R4: 110 Ом;
  • R5: 15 кОм;
  • R6: 50 Ом;
  • R7 на 150 Ом мощностью 2 Вт;
  • VD1 – диод импульсного типа, обратное напряжение от 50 В;
  • VS1 – тиристор Т-160, 250 или КУ202;
  • транзисторы с прямым переходом КТ315 или им подобные (КТ3107 и т. д.);
  • транзисторы с обратным переходом КТ361, КТ 3102 и т. п.;
  • FU1: предохранитель на 10 А (подойдёт деталь на 15–20 А, с запасом).

На тиристор воздействуют компоненты VT1 и VT2. Затем в работу вступает диод, защищающий цепь от скачков напряжения, возникающих на VS1. R5 в самодельном зарядном устройстве для аккумулятора «вычисляет» I = 1/10 ёмкости. При 60 А/ч используется зарядка в 6 А. Чтобы знать точно, на контактах, ведущим к заряжаемому изделию, желательно вставить амперметр. Это позволит держать контроль над процессом.

Теперь о питании. Схема самодельного зарядного устройства для автомобильного аккумулятора подразумевает применение трансформатора, выдающего от 18 до 22 В. При большем значении сопротивление R7 увеличьте до 200 Ом. Не забудьте элементы моста на диодах закрепить на охлаждающих алюминиевых радиаторах (применяйте специальную пасту). Стоит отметить: использование диодов старого образца типа Д242 подразумевает их установку на радиатор через изолирующие прокладки-шайбы. Номинал предохранителя должен соответствовать применяемому току. Если это до 6 А, то для FU1 вполне достаточно 6,3 А. Ниже – схема для зарядных устройств для автомобильного аккумулятора (обратная сторона печатной платы):

Помимо предохранителя, существуют электронные способы гарантии от замыкания и перепутывания полюсов, что ведёт к выходу из строя ЗУ. Например, у вас имеется изделие, где уже невозможно различить «плюс», «минус». Тогда поможет специальная схема, сигнализирующая о неправильном подключении клемм. Её нужно включать последовательно между АКБ и ЗУ:

Используемые детали:

  • R1 и R2 – резисторы сопротивлением по 510 Ом;
  • VD1 и МВ2 – диоды (например, 1N4148 или ему подобные);
  • VD3 и МВ4 (можно не устанавливать);
  • реле любое на 12 В и 15 А (можно вытащить из отслужившего своё UPS);
  • светодиоды любые.

Схема работает просто. При соблюдении полярности заряд, ещё имеющийся в батарее, замкнёт контакты реле, процесс начнётся, что подтвердит загоревшийся зелёный светодиод. Если же контакты перепутаны, зажжётся красный сигнализатор. Ниже – печатная плата устройства, защищающего от несоблюдения полярности при зарядке:

Как сделать цветомузыку на ку202н

Есть несколько основных способов, по которым можно самостоятельно собрать цветомузыку. Как правило, их схемы отличаются не слишком сильно, так как суть работы у цветомузыки идентична друг другу.

Цветомузыка на тиристорах КУ 202 Н

Зачастую схема предназначена для систем, при которых свет и его яркость никак не зависят от громкости звука. Подача звукового сигнала происходит через выход первичной обмотки разделительного трансформатора.

А второй сигнал служит для поступления сигнала именно на световые фильтры через резисторы. Они и контролируют, и регулируют его уровень.

  • Фильтры позволяют четко разделить поступающий сигнал на три основные канала. Первый канал отвечает за самую низкую частоту, и пресекает любую частоту выше 800 Гц.
  • Фильтр для второго канала устанавливается на более высокую частоту, которая регулируется до 2000 Гц. Настройка данного фильтра для цветомузыки своими руками выполняется при помощи резистора R15.

Третий канал объединяет в себе всё, что находится выше этих частот. Настраивают третий фильтр при помощи резистора R22.

После пошаговой настройки каждого фильтра сигналы детектируются. Далее они усиливаются и подаются на оконечный каскад. Процедура должна проводиться на мощных транзисторах, либо на тиристорах ку202н.

Порядок сборки схемы

Для того, чтобы сделать цветомузыку на ку202н своими руками, нужно тщательно изучить схему сборки конструкции. Транзистор КТ315 можно заменить сторонними кремниевыми транзисторами, но при условии, что коэффициент усиления не менее 50.

Трансформатор Т1 используется любой, главное, чтоб подходило количество витков. Можно изготовить такую систему самостоятельно, и обмотать их по 150-300 витков каждую.

Диодный мост выбирают исходя из уровня нагрузки, которой будет подвергаться система. Для того, чтоб обеспечить транзисторы достаточным питанием, нужно использовать любой стабилизированный блок питания, минимальный ток которого не менее 250 мА.

Каждый из каналов самодельной цветомузыки собирается отдельно друг от друга.

После нормальной отработки каскада осуществляется сборка активного фильтра. После проверки работоспособности каждого канала получается действительно рабочая система.

Процесс сборки самодельной цветомузыки на ку202н достаточно долгий и кропотливый, но при правильной последовательности получается действительно рабочая система.

Сборка схемы «бегущие огни»

Не менее знаменитая система подсветки, которая активно использовалась при организации вечеринок в стиле «диско».

Схема сборки подразумевает сборку на двух микросхемных триггерах, а также дешифраторах. А для регулировки скорости переключения используют мультивибраторы.

На первичной обмотке стоит трансформатор Тр1, который понижает напряжение. Напряжение в 5 Вт получается при помощи стабилизатора КРЕН5А.

Транзистор должен быть вида КТ315Б, тиристоры выбирают КУ202Н, конденсатор и резистор — используются любые, независимо от типа.

Зарядка от USB-порта

Можно изготовить зарядное устройство для никель-кадмиевых батарей на основе обычного USB-порта. При этом, заряжаться они будут током емкостью примерно 100 мА. Схема, в таком случае, будет следующей:

На сегодняшний момент, существует достаточно много различных зарядных устройств, продающихся в магазинах, но их стоимость может быть достаточно высокой. Учитывая, что главный смысл различных самоделок — это именно экономия денежных средств, то самостоятельная сборка еще более целесообразна в данном случае.

Данную схему можно доработать, добавив дополнительную цепь для зарядки пары аккумуляторов AA. Вот, что в итоге получилось:

Чтобы было более наглядно, вот те комплектующие, которые использовались в процессе сборки:

Понятно, что без элементарного инструментария нам не обойтись, поэтому перед началом сборки необходимо удостовериться, что у вас в наличии есть все необходимое:

  • паяльник;
  • припой;
  • флюс;
  • тестер;
  • пинцет;
  • различные отвертки и нож.

Интересный материал про изготовление своими руками, рекомендуем к просмотру

Тестер необходим для того, чтобы проверить работоспособность наши радиодетали. Для этого нужно сравнить их сопротивление, после чего сверить с номинальным значением.

Для сборки нам также понадобится корпус и батарейный отсек. Последний можно взять из детского симулятора Тетрис, а корпус может быть изготовлен из обычного пластмассового футляра (6,5см/4,5см/2см).

Крепим отсек для батарей на корпусе, используя шурупы. В качестве основы для схемы прекрасно подойдет плата от приставки Денди, которую нужно выпилить. Удаляем все ненужные компоненты, оставляя только гнездо питания. Следующим шагом будет пайка всех деталей, основываясь на нашей схеме.

Шнур питания для устройства можно взять обычный шнур от компьютерной мыши, обладающий входом USB, а также часть питающего провода со штекером. При пайке нужно строго соблюдать полярность, т.е. припаивать плюс к плюсу и т.д. Подключаем шнур к USB, проверяя напряжение, которое подается на штекер. Тестер должен показывать 5В.

В завершении нужно установить зарядный ток. Для этого необходимо разорвать цепь, соединяющую VD1 и плюсовую полярность аккумулятора. Подключаем тестер таким образом, чтобы его плюс соединялся с диодом, а минус — с аккумулятором. Выставляем режим измерения тока (200 мА).

Включаем в есть, после чего должен загореться светодиод, конечно, если все сделано правильно. Затем устанавливаем необходимый ток зарядки (100 мА), путем изменения сопротивления на резисторе R1. Проводим данную процедуру и для второго аккумулятора AA.

Еще одно интересное видео на это тему

Импульсные зарядки для АКБ

Не так давно зарядные устройства типа трансформатор встречались повсеместно, то сегодня найти такое ЗУ будет довольно проблематично. Со временем трансформаторы отошли на второй план, уступив позиции импульсным зарядкам. В отличие от трансформатора, импульсное ЗУ позволяет обеспечить полный заряд АКБ, но это достоинство не главное.

Для работы с трансформатором требовалась определенная сноровка, а вот с импульсными ЗУ довольно просты в эксплуатации. Кроме того, в отличие от трансформаторов, их стоимость более доступная. Также трансформатор характеризуется большими размерами, а габариты импульсных устройств более компактные.

Заряд АКБ импульсного девайса, в отличие от трансформатора, производится в двух этапах. Первый — это постоянство напряжения, второй — тока. Обычно в основе современных ЗУ лежат пусть и однотипные, но достаточно сложные схемы. Так что, если данный девайс выходит из строя, то автомобилисту, вероятнее всего, придется покупать новое.

Что касается кислотно-свинцовых АКБ, то эти батареи в принципе чувствительные к температуре. Если на улице зной, то уровень заряда должен составлять хотя бы половину, а если температура минусовая — то АКБ должен быть заряжен хотя бы на 75%. Иначе ЗУ попросту перестанет функционировать и понадобится его подзарядка. Для таких целей отлично подходят импульсные ЗУ 12 вольт, так как они не оказывают негативного воздействия на сам АКБ (автор видео — Артем Петухов).

Защита

УЗ для АКБ что броня для танка, так что с него и начнем. УЗ для самодельного ЗУ АКБ желательно делать, разумеется, попроще. Далее, УЗ также желательно строить автономным, чтобы через него можно было подключать АКБ к любому ЗУ, схема которого вам приглянется, или которое у вас уже есть. И последнее, УЗ должно срабатывать как можно четче и быстрее, для возможности использования его в схемах заряда современных аккумуляторов с герметичными банками.

Малоэффективные схемы защиты автоаккумуляторов

Простейшая защита от переполюсовки диодами Шоттки (слева на рис.) не спасет от экстратока перезаряда или при неправильном подключении исправной недозаряженной АКБ. Разве что путем сгорания недешевой диодной сборки. Если аккумулятор «новый, хороший», то, пока руки не дойдут до «нового, хорошего» ЗУ, может выручить интегрированная защита по схеме справа; ее можно встроить в уже имеющийся самодельный лабораторный ИП.

В данной схеме используются медленный отклик АКБ на скачок напряжения и гистерезис реле: их ток (и напряжение) отпускания в 2,5-4 раза меньше тока/напряжения срабатывания. Любое ЗУ АКБ включают только с подключенной АКБ. Реле – переменного тока на напряжение срабатывания 24 В и ток через контакты от 6 (9, 12) А. При включении ЗУ реле срабатывает, контакты его замыкаются, пошел заряд. Напряжение на выходе трансформатора падает ниже 24 В, но на выходе ЗУ остается 14,4 В, выставленных заранее под нагрузкой R3 в схеме стабилизации напряжения. Реле пока держит, но, вдруг пошел экстраток, первичное напряжение просядет больше, реле отпустит и цепь заряда разорвется.

Недостатки у этого ЗУ серьезные. Во-первых, нет защиты от скачка напряжения по выходу от переполюсовки истощенной АКБ. Во-вторых, нет самоблокировки: от экстратока реле будет хлопать и хлопать, пока контакты не обгорят. В-третьих, нечеткое срабатывание: любое реле по недонапряжению на обмотке отпускает с дребезгом контактов. Поэтому пытаться ввести в эту схему регулировку тока срабатывания бессмысленно. И, наконец, реле и трансформатор Т1 должны быть подобраны друг к другу, т.е. повторяемость данного устройства близка к нулевой.

Схема УЗ, полностью соответствующая указанным выше требованиям, дана на рис.:

Простая схема защиты аккумулятора автомобиля от перезаряда, перенапряжения и переполюсовки

Ток заряда течет через нормально замкнутые контакты реле K1, что намного уменьшает вероятность их обгорания. Обмотка K1 подключена по логической схеме диодного «или» к модулю защиты от экстратока (R1, VT1, VD1), модулю защиты от перенапряжения (R2, R3, R4, VT2, VD2) и цепи самоблокировки K1.2, VD3; порог срабатывания K1 по перенапряжению устанавливается R3. Недостаток у этого УЗ всего один, его нужно налаживать с использованием балластной нагрузки и мультиметра:

  • Выпаивают (или пока не запаивают) K1, VD2 и VD3.
  • Вместо обмотки K1 включают мультиметр, установленный на измерение напряжения 20 В.
  • Вместо АКБ подключают резистор не менее чем на 25 Вт сопротивлением 2,4 Ом для тока заряда 6 А, 1,6 Ом на ток заряда 9 А и 1,2 Ом на ток 12 А; его можно накрутить из той же проволоки, что и R1.
  • Подают на вход напряжение 15,6 В от ЗУ. Мультиметр покажет напряжение (токовая защита сработала), т.к. сопротивление R1 выбрано с небольшим избытком.
  • Уменьшают немного напряжение ЗУ, пока мультиметр не покажет 0. Записывают полученное значение выходного напряжения ЗУ. Альтернатива – неизменное напряжение ЗУ и трудоемкая подгонка R1.
  • VT1 выпаивают, K1 и VD2 запаивают на место, движок R3 ставят в крайнее нижнее по схеме положение.
  • Напряжение ЗУ увеличивают, пока на нагрузке не окажется 15,6 В.
  • Плавно вращают движок R3 до срабатывания K1.
  • Уменьшают напряжение ЗУ до записанного ранее значения.
  • Впаивают на место VT1 и VD3 – схема готова к финальным испытаниям.
  • Через амперметр подключают исправную недозаряженную АКБ; к ней – мультиметр, установленный на напряжение.
  • Пробный заряд проводят с непрерывным контролем. Когда мультиметр покажет 14,4 В на АКБ, засекают ток содержания. Скорее всего он будет в норме для данной АКБ (см. выше); желательно, чтобы ближе к нижнему пределу.
  • Если ток содержания великоват, еще немного уменьшают напряжение ЗУ.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Крутая шина
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: